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Abstract

Modeling complex dynamical systems poses significant challenges, with traditional
methods struggling to work on a variety of systems and scale to high-dimensional
dynamics. In response, we present DynaDojo, a novel benchmarking platform
designed for data-driven dynamical system identification. DynaDojo provides
diagnostics on three ways an algorithm’s performance scales: across the number of
training samples, across the complexity of a dynamical system, and across resources
needed to maintain a target error. Furthermore, DynaDojo enables studying out-of-
distribution generalization (by providing unique test conditions for each system)
and active learning (by supporting closed-loop control). Through its user-friendly
and easily extensible API, DynaDojo accommodates a wide range of user-defined
Algorithms, Systems, and Challenges (evaluation metrics). The platform also
prioritizes resource-efficient training with parallel processing strategies for running
on a cluster. To showcase its utility, in DynaDojo 0.9, we include implementations
of 7 baseline algorithms and 20 dynamical systems, along with several demos
exhibiting insights researchers can glean using our platform. This work aspires
to make DynaDojo a unifying benchmarking platform for system identification,
paralleling the role of OpenAI’s Gym in reinforcement learning.1

1 Introduction

Dynamical systems, fundamental to disciplines like physics, engineering, economics, and neu-
roscience, are difficult to predict and control when they exhibit nonlinear and high-dimensional
behaviors. Traditional methods, which rely on known underlying equations, fall short when faced
with modern problems like stock market forecasting or modeling human social interactions, where
such equations are unknown or non-existent. This has prompted a shift toward data-driven computa-
tional modeling—leveraging machine learning to learn directly from measured data (bypassing the
need for predefined equations)—known as system identification [1]. To benefit from these data-driven
approaches, however, researchers and practitioners need tailored benchmarks to easily evaluate and
compare methods for system identification in their area of study. In this work, we present DynaDojo,
a novel benchmarking platform, modeled after OpenAI’s Gym [2] and Procgen [3], to standardize
benchmarking any algorithm on any dynamical system.
∗Equal contribution
†Corresponding Author
1Code available at https://github.com/FlyingWorkshop/dynadojo for access to the implemented

challenges, systems, baseline models, and analysis code.
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Figure 1: Pipeline for how to use DynaDojo. Select an algorithm and a system, then instantiate a
challenge with them, and evaluate to get results. It is easy to run repeated DynaDojo challenges
to compare performance on out-of-distribution data, with active learning, between algorithms, and
across systems. See Section 3.2.1 and Figures 7, 6, 8 and 9 for examples of DynaDojo results.

2 Overview of DynaDojo

DynaDojo operates on three core objects: Algorithms, Systems, and Challenges.2 Run a
Challenge with any given Algorithm and System to evaluate how the algorithm’s performance
scales when fixing either the complexity of a system, the number of training samples, or a target
error to achieve (see Figure 1). DynaDojo currently provides a suite of 7 algorithms, 20 systems,
and 3 challenges to be used. Additionally, DynaDojo provides abstract interfaces for Algorithms,
Systems, and Challenges that can be extended to support custom implementations (see Figure 11).

2.1 Algorithms

Algorithms are subclasses of AbstractAlgorithm, an interface designed to wrap any learning
algorithm that can be used for system identification. At initialization, algorithms are provided the
dimensionality of the data which can be used to define the appropriate parameters for the algorithm,
for example, the number of layers in a neural network or degree of a polynomial in a polynomial
regression. The AbstractAlgorithm interface further abstracts the details of the algorithm under
fit, predict, and act methods for ease of use and simplicity. See Appendix C for additional details
on the 7 algorithms included in DynaDojo.

2.2 Systems

Systems are subclasses of AbstractSystem, an interface to wrap any procedurally-generated dy-
namical systems. Systems are initialized with a latent dimension and embedding dimension which

2We indulge in a minor abuse of notation. Technically, DynaDojo only implements AbstractAlgorithm,
AbstractSystem, and Challenge. We use Algorithms and Algorithm to refer to concrete subclasses of
AbstractAlgorithm; System and Systems to refer to concrete cublasses of AbstractSystem; and the plural
Challenges to refer to multiple Challenge classes.
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Figure 2: The 20 dynamical systems currently packaged in DynaDojo. Systems are annotated with the
system type (discrete, continuous, or hybrid) and their tunable measure of complexity. We implement
two types of Lotka-Volterra (Competitive and Prey-Predator); five types of Bounded-confidence
opinion systems (Algorithmic Media Bias [4], Deffuant [5], Hegselmann-Krause (HK) [6], Weighted
HK (WHK) [7], and Attraction-Repulsion WHK [7]); three types of epidemic systems (SIR, SIS, and
SEIS), and two types of FBSNNs (Black-Scholes-Barenblatt (BSB) [8], Hamilton-Jacobi-Bellman
(HJB) [8])

determine the complexity of the system and its generated trajectories. The AbstractSystem interface
abstracts the details of simulating the system under the make_init_conditions and make_data
methods. Initial conditions can be produced in-distribution or out-of-distribution. Data can be
generated with noise or optional control inputs. The AbstractSystem interface also abstracts the
evaluation metric for any particular dynamical system with the calc_error method. For example,
continuous systems, such as linear dynamical systems, might implement mean-squared error to
evaluate the accuracy of predicted trajectories, whereas a binary system, such as cellular automata,
might use Hamming distance instead. Other system-specific metrics, such as achieving stability with
control, can likewise be defined in calc_error. See Figure 2 for the systems that we package with
DynaDojo and Figure 10 for the adjustable parameters available for systems.

2.3 Challenges

Challenges are subclasses of Challenge, an interface for orchestrating evaluation of algorithms on
systems.3 The primary use of challenges is to simplify and parallelize the process of repeatedly train-
ing and testing algorithms on systems, especially when scaling parameters of the system, algorithm,
or training process. In a challenge, the evaluate method manages repeated and parallelized trials of
algorithm instantiation, system instantiation, data generation, testing (see pseudo-code in Algorithm
1 of Appendix A). The plot method visualizes the results of the challenge.

In DynaDojo 0.9, we provide three challenges to evaluate scaling: FixedComplexity,
FixedTrainSize, and FixedError. In FixedComplexity, we repeatedly train and test an al-
gorithm on a system of fixed complexity while scaling the number of training samples. In
FixedTrainSize, we repeatedly train and test an algorithm on systems of increasing complex-
ity while fixing the number of training samples. In FixedError, we search for the number of training

3Unlike AbstractSystem and AbstractAlgorithm, Challenge is not an abstract base class and can be
used off-the-shelf. While subclasses of Challenge suffice for most experiments, advanced developers who want
to implement a bespoke challenge may chose to use Challenge rather than a subclass because it exposes more
parameters.
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samples necessary for an algorithm to achieve a target error rate on systems of increasing complexity.
In Figure 3, we visualize the relationship between these scaling challenges.

Figure 3: DynaDojo challenges provide a
snapshot of an algorithm’s scaling behavior
along one slice of a “performance landscape”
by varying three dimensions: system com-
plexity (C), error (E), and number of training
samples (N). Each challenge varies parame-
ters along one dimension while holding an-
other constant, in order to measure the algo-
rithm’s performance on the third.

3 Example usage

3.1 Running a single algorithm on a single system

DynaDojo algorithms and systems can be used independently of challenges. To train and test a single
algorithm instance on a single system instance, first instantiate the system and create the training and
test data (which, in this example, is OOD).

1 latent_dim, embed_dim, train_size, test_size, timesteps = (3, 3, 50, 10, 50)
2 lorenz= LorenzSystem(latent_dim, embed_dim, seed=100)
3 x0 = lorenz.make_init_conds(n)
4 y0 = lorenz.make_init_conds(30, in_dist=False)
5 x = lorenz.make_data(x0, control=np.zeros((n, timesteps, embed_dim)),

timesteps=timesteps)↪

6 y = lorenz.make_data(y0, control=np.zeros((test_size, timesteps, embed_dim)),
timesteps=timesteps, noisy=True)↪

Then instantiate the algorithm, fit on the training data, predict and calculate error. Plotting utilities,
demos, and examples are provided in our GitHub repository.

1 sindy = SINDy(embed_dim, timesteps,
seed=100)↪

2 sindy.fit(x)
3

4 # predict trajectories
5 y_pred = sindy.predict(y[:, 0],

timesteps)↪

6 error = lorenz.calc_error(y, y_pred)
7

8 fig, ax = dynadojo.utils.plot([y_pred,
y], target_dim=min(3, latent_dim),
labels=["pred", "truth"],
max_lines=15)

↪

↪

↪

(a) Code for fitting and testing SINDy on a LorenzSystem
using DynaDojo. Plotting utilities are provided to visualize
high dimensional systems.
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(b) Plot of SINDy algorithm prediction for
a Lorenz system showing high overlap with
ground truth.
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3.2 Running a challenge

To evaluate, for example, how linear regression generalizes to linear dynamical systems of increasing
complexity, run FixedTrainSize. First, decide on the complexities (latent dimensions) to scale
across, the number of training samples, the number of trials, and the training and testing conditions.
Supply these arguments to instantiate a FixedTrainSize challenge. Then, evaluate the challenge
with the algorithm class and plot the results. By default, challenges are run without parallelization;
however, code examples showing parallelization across cores and computers are provided on GitHub.

1 challenge = FixedTrainSize(
2 Latent_dims=np.logspace(1, 3,

20, include_end=True),↪

3 train_size=100,
4 timesteps=50,
5 control_horizons=0,
6 max_control_cost_per_dim=0,
7 system_cls=LDSSystem,
8 trials=100,
9 test_examples=50,

10 test_timesteps=50 )
11

12 data = challenge.evaluate(
13 LinearRegression,
14 noisy=True,
15 ood=True,
16 seed=1027 )
17

18 g = FixedTrainSize.plot(data)

(a) Code for running FixedTrain challenge with on
a training set size of 100 for LinearRegression on
LDSSystem with latent dimensions from 10 to 1000.
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(b) FixedTrainSize plot for linear regression on a lin-
ear dynamical system with 100 training samples. Latent
dimensionality (L) is plotted on the x-axis and error (E)
on the y-axis. Curves for testing on in-distribution and
out-of-distribution (OOD) data are overlapping, show-
ing OOD generalization. After L = 100, error rapidly
increases, showing weaker sample efficiency with re-
spect to system complexity.

3.2.1 Analyses

With a suite of baseline algorithms and dynamical systems, DynaDojo is designed to support running
repeated challenges to analyze algorithms across systems, schematically depicted in Figure 1.

Out-of-Distribution Generalization To test how an algorithm generalizes to out-of-distribution
(OOD) data, run a challenge with the ood parameter enabled. Challenges will test the algorithm
on data simulated both from initial conditions drawn from the same distribution—as the training
set initial conditions—and from those drawn OOD. See Figure 6 for an example analysis of OOD
generalization in a FixedComplexity challenge.

Active Learning DynaDojo algorithms can optionally implement an act method which generates
control inputs that DynaDojo systems accept when generating data. To compare the effect of active
learning, run a challenge for a given algorithm without control and the same algorithm with control on
a given system. See Figure 7 for an example analysis of active learning in a FixedError challenge.

Comparing Algorithms To compare algorithms, run a challenge for two different algorithms on
the same system. See Figure 8 for an example comparison of two algorithms in a FixedError
challenge.

Cross-System Generalization To investigate whether an algorithm’s performance is generalizable
across systems, run a challenge with an algorithm on two different systems. See Figure 9 for an
example analysis of cross-system generalization in a FixedTrainSize challenge.
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Figure 6: Comparing OOD generalization for
deep neural networks (DNN) on linear dy-
namical systems (latent dimension 5) in a
FixedComplexity challenge. In-distribution
test error (blue line) is decreasing steeply but
OOD test error (orange line) is constant as number
of training samples (x-axis) increases, showing
lack of OOD generalization as training size scales.

Figure 7: Comparing active learning for Low-
est Possible Radius (LPR) on cellular automata
(CA) in a FixedError challenge. As CA com-
plexity (x-axis) scales, LPR w/ control (blue line)
requires less training samples (y-axis) than LPR
w/o control (orange line) to achieve zero error.
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(a) FixedError for LR on LDS, target error=1e-5.
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(b) FixedError for DNN on LDS, target error=1e0.

Figure 8: Comparing two algorithms: Linear regression (LR) and deep neural network (DNN) are
evaluated on linear dynamical systems in a FixedError challenge. As complexity (x-axis) of the
system scales, LR (left) achieves a much lower target error of 10−5 with fewer or comparable number
of training samples (y-axis) than needed by a DNN (right) for a higher target error rate of 1.
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(a) FixedTrainSize with SINDy and Lorenz.
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(b) FixedTrainSize with SINDy and LDS.

Figure 9: Cross-system generalization: SINDy is evaluated on Lorenz Systems (left) and linear
dynamical systems (LDS) (right) in a FixedTrainSize challenge. Error (y-axis) decreases with
complexity (x-axis) for Lorenz, but increases and plateaus with complexity for LDS. Also, OOD
(orange) and in-distribution (blue) error are matched, showing OOD generalization.
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4 Design

Benchmark platform, not datasets. Rather than designing a single or suite of benchmarks,
DynaDojo is a benchmarking platform. That is, we provide dynamical systems to benchmark on and
baseline algorithms to compare against. In addition, scaling challenges orchestrate and parallelize
the benchmarking process. We take this approach to standardize the process of benchmarking and
unify benchmarks under one interface. To show the versatility of DynaDojo as a benchmarking
platform, we provide numerous example Jupyter notebooks for implemented algorithms, systems,
and challenges, available in our GitHub repository.

Simple by default. A key challenge in system identification is being able to compare one algorithm
against other algorithms on many systems. This is difficult because various existing models and
systems either lack a simple API or all have different APIs. Wrestling together APIs and setting
the right parameters is a barrier to benchmarking in system identification. We designed DynaDojo
with a focus on simplicity of the API to ensure that different algorithms can be painlessly run on any
system. To enable this, all systems and algorithms must come with default presets, with optional
overrides. This comes at a cost of developers having to determine reasonable or adaptive settings for
the algorithms or systems they contribute.

Procedurally generated data. Rather than a static dataset, we choose to have dynamical systems
in DynaDojo procedurally generate data at train and test time in order to support active learning,
where system trajectories are altered by control inputs provided from an algorithm. Additionally, we
require a tunable, continuous measure of complexity for each system to support scaling metrics (see
Figure 3). This requires that dimensionality of system trajectories must be dependent on the system
complexity–another reason for procedural data generation. Compared to pre-computed datasets,
procedural generation of data can be costly especially for systems of high complexity.

Focused on scaling, not performance. Often, algorithms are evaluated on their performance for
a single task. On the contrary, we are focused on how that performance scales as the task gets
harder, or more data is provided (see Figure 3). Specifically in system identification, we saw an
opportunity to numerically define task difficulty via dynamical system complexity measures. With
benchmarking scalability as our goal, it became necessary to implement challenges to orchestrate the
scaling process and to design abstractions over algorithms and systems to enable this. To ameliorate
the inflexibility of requiring interfaces over both algorithms and systems, we designed them to be
decoupled from another and thus independently usable outside of DynaDojo (see Section 3.1). To
evaluate scaling, many rounds of instantiating algorithms and systems and training them must be
repeated as parameters scale. This can be very resource intensive so we implemented challenges to
support parallelization across cores and computers. We also packaged a DynaDojo Docker container
to be easily used on cluster environments.

Figure 10: Users can adjust nearly all DynaDojo parameters, including how trajectories are initialized,
simulated, and controlled, as well as system complexity and evaluation.

Flexible and extensible. We support a variety of settings to enable features such as OOD data
generation and control inputs in order to ensure DynaDojo covers broad use-cases (Figure 10).
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As mentioned above, we isolate algorithm, system, and challenge implementations so users can
choose to use whatever parts of DynaDojo are relevant to their work. Additionally, we provide
extensible interfaces for algorithms, systems, and challenges to ensure that DynaDojo can be adapted
to use-cases we have not covered (Figure 11).

Figure 11: Users can extend DynaDojo by implementing your own algorithm, system, or challenge.

5 Related work

5.1 Benchmarks and benchmarking frameworks

System identification focuses on accurately modeling the dynamics of a system, whereas reinforce-
ment learning (RL) aims to optimize actions within a system to maximize rewards. Despite their
distinct objectives, they both seek to model and interact with complex environments and can often
be used in solving similar or overlapping problems. Given their overlap, we draw upon and connect
literature from both areas to motivate the development of our benchmarking platform.

Single-System Benchmarks In the field of system identification, benchmarks have been created
that measure one specific dynamical system from a specific physical phenomena [9, 10]. These
single-system benchmarks have been used to evaluate specific model architectures [11] or to compare
different approaches [12]. These narrowly-focused benchmarks do not facilitate the evaluation of a
method’s generalization across a diverse set of systems, which is a central aim of our work.

Benchmark Suites Benchmark suites, such as [13, 14, 15, 16], offer a broader scope for evaluating
system identification by covering a larger subset of system classes. These suites, however, are
restricted to specific types of systems or representations, such as chaotic systems [13, 14], physical
systems [15], or partial differential equations [16]. Our platform takes a similar benchmark suite
approach but is designed to be extensible, supporting the addition of diverse dynamical systems
through a common interface. For a comparison of DynaDojo with existing benchmarks, see Table 1.

OpenAI Gym To address the fragmentation and lack of standardization in system identification
benchmarks, we adopt a similar approach to OpenAI’s Gym environment [2]. OpenAI Gym offers a
common interface for RL benchmarking tasks and, with over 5000 citations, has become a standard
benchmark framework in RL [2]. Our work creates an extensible, standardized gym-like platform to
unify system identification benchmarks. Contrary to OpenAI’s focus on environments, not agents [2]—
which are analogous to DynaDojo’s systems and algorithms, respectively—we provide abstractions
over both entities and implement challenges that orchestrates the process of benchmarking scaling.
In Sections 4 and 5.2, we explain the motivation behind this decision and related works.

5.2 Generalization and scaling

We draw upon literature to motivate the settings and challenges implemented in our platform.
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Table 1: Comparison with Related Benchmarks
# Systems Extensible OOD Control SE Complexity Tunability Evaluation

Single-System [9, 10] 1
PDEBench [16] 11 ✓ ✓ Fixed, Quantitative TS
Otness et al [15] 4 ✓ ✓ Limited
Chaos [13] 131 Fixed, Quantitative TS
New et al [17] 2 Continuous, Quantitative TS
Procgen [3] 16 Games ✓ ✓ ✓ ✓ Binary (Easy/Hard) TS
DynaDojo 20 ✓ ✓ ✓ ✓ Continuous, Quantitative TS, FT, FC, FE

DynaDojo, to the best of knowledge, is the first extensible dynamical systems benchmark that supports
control and evaluates Out-of-Distribution (OOD), Complexity, and Sample Efficiency (SE). (TS =
Test Set, FT=Fixed Training, FC=Fixed Complexity, FE=Fixed Error)

Out-of-Distribution Generalization In system identification, there is interest in understanding
how well models can generalize beyond the training distribution. [18] probes how deep learning
models generalize to trajectories from out-of-distribution initial conditions for dynamical systems.
[19] investigates whether deep neural networks learning cellular automata show out-of-distribution
generalization for unseen initial configurations with different rule sets. Recent RL benchmarks have
sought to split train and test data to draw from different gaming environments in response to problems
of overfitting on training environments [20, 21]. Motivated by this work, DynaDojo enables algorithm
evaluation on both in-distribution and out-of-distribution data.

Active Learning In RL, active learning—where the algorithm intelligently selects control inputs to
explore state-space—enhances sample efficiency. While dynamical systems can accept control inputs
and therefore can support active learning, this property is often underutilized in system identification
benchmarks that predominantly use static datasets [13, 15, 16, 9, 10]. In our work, we enable
algorithms within the benchmark to provide control inputs to dynamical systems, thereby facilitating
active learning approaches and interactive data generation.

Scaling Complexity There is a desire to understand how algorithms perform on systems of varied
complexity. For example, within system identification, [19] and [22] test deep neural networks on
their generalization capabilities for learning cellular automata with varied neighborhood sizes.

In RL, benchmarks have been designed to train and test algorithms on game environments with
varying difficulty levels [3]. This work on games, however, uses imprecise notions of difficulty which
are calibrated roughly on the training speeds of baseline algorithms, but this definition is inconvenient
because it is hard to generalize and test.

In system identification, [13] provides a suite of over a hundred benchmark datasets of known chaotic
dynamical systems. Each system is annotated with mathematical properties reflecting the complexity
of the system. These annotations facilitate comparison of learning methods across dynamical systems
of varying complexity; our work is similarly motivated. In DynaDojo, instead of providing fixed
datasets corresponding to different complexity levels, dynamical system classes are defined to allow
their complexity levels to be programmatically scaled.

Cross-System Generalization While we are unaware of any work in system identification that
explores generalization across different systems, the concept has been explored in RL. Generalization
in RL has expanded from considering unseen states to learning across different domains, as exempli-
fied by AlphaZero’s ability to learn Go, Chess, and Shogi [23], compared to AlphaGo’s specialization
in Go [24]. It is also similar the field of multi-task learning in which one general policy might train
on several different environments [25]. This trend is reflected in RL benchmarks and toolkits that
measure performance across a diverse variety of environments [2, 3]. Our work takes an analogous
approach by facilitating the easy evaluation of an algorithm’s performance across different classes of
dynamical systems, thereby capturing the algorithm’s cross-system generalization capabilities.

Scaling Training Size Sample efficiency, the ability to learn effectively from a limited number
of training samples, is particularly relevant as it directly influences an algorithm’s performance in
real-world scenarios where data may be scarce, expensive to obtain, or hard to simulate [26].
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In DynaDojo, we’ve designed metrics that measure how a algorithm’s performance scales with
changes in system complexity and training dataset size. This feature enables users to assess an
algorithm’s sample efficiency, particularly as it handles increasing complexity.

6 Future work

DynaDojo is still a work in progress. As of our most recent release, our platform has certain limitations
worth noting: While we implement parallel computing across all Challenges, the FixedError
challenge is still especially resource-intensive and susceptible to noise. We aim to implement more
sophisticated root-finding search algorithms to replace our exponential search.

To improve the rigor of our scaling results, we would like to move to a more objective measure of
system complexity (e.g., the intrinsic dimension of the objective landscape [27]). We also seek to
develop scaling metrics that summarize the results plotted by DynaDojo. Furthermore, we would like
to define a unified generalization metric that captures an algorithm’s capacity to work on OOD test
data, across scales of complexity, and on different dynamical systems altogether.

We will, of course, always look for ways to include more state-of-the-art algorithms and dynamical
systems of interest. In particular, we would like to develop simple wrappers for OpenAI Gym
environments and algorithms to immediately accommodate their vast library, and vice-versa, wrapping
DynaDojo Systems and Algorithms for OpenAI Gym.

To further broaden the scope and applicability of DynaDojo, we plan on introducing new Challenges
of interest to the community. For example, we aim to incorporate an optimal control challenge
involving stabilizing a system around a target trajectory, a transfer learning challenge focusing
on fine-tuning to new system data, a multi-task learning challenge around maintaining consistent
performance across multiple dynamical systems, and a curriculum learning challenge focusing on
leveling up system complexity without retraining an algorithm from scratch. All of the Challenges
can also be extended to measure prediction/control error on multiple timescales.

Lastly, in light of the emerging importance of scaling laws in deep learning, we hope to incorporate
new scaling dimensions. These will include the number of model parameters, computational cost of
training, and activation sparsity, on top of the three existing scaling dimensions. By including these
dimensions, we aim to offer a more comprehensive view of how algorithms scale.
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A DynaDojo API

DynaDojo is a Python API that lets researchers evaluate how well algorithms generalize on dynamical
systems challenges. The platform’s purpose is to address the difficulties associated with modeling
and predicting dynamical systems by providing a standardized framework for assessment. The API
is structured around three core classes: AbstractSystem, AbstractAlgorithm, and Challenge.
Their relationship is shown in the UML diagram shown in Figure ?? and described in detail below.

Pipeline For DynaDojo’s evaluation pipeline, we first instantiate a Challenge and set a
AbstractSystem subclass for that challenge using the system_cls attribute. We then call the
challenge’s evaluate method, which interfaces between the system and a AbstractAlgorithm
subclass of that we pass to the method. For example, researchers can evaluate a LinearRegression
algorithm by passing it into the evaluate method of an FixedTrainSize challenge set with an
LDSSystem.

The selected algorithm is repeatedly initialized and fit on data generated from the system and
optionally controlled by algorithm instance itself. With evaluate, Challenge iteratively adjusts
how the data is generated, varying the complexity, size, timesteps, distribution and noise. For testing,
evaluate compares a test set generated from the system instance with the predicted trajectories
from the algorithm instance, returning the results as a pandas DataFrame.

Systems AbstractSystem is an abstract base class for dynamical systems. We currently introduce
DynaDojo with 20 systems outlined in 2, and described in further detail below. Each system is
responsible for generating data associated with that dynamical system. Each system must implement
several abstract methods from AbstractSystem: make_init_conds, make_data, calc_error,
and calc_control_cost.

Initial conditions are generated using the make_init_conds method. The method accepts arguments
specifying the number of initial conditions, the embedded dimension, and whether to sample out-of-
distribution initial conditions. Note that in DynaDojo, systems are responsible for recovering their
own latent initial coordinates. To illustrate this, consider an instance of LDSSystem with latent_dim
ℓ and embed_dim e. The latent dynamics are generated by the equation

ẋ(t) = Ax(t) +Bu(t)

where A ∈ Rℓ×ℓ, x(t) ∈ Rℓ, B ∈ Re×ℓ, and u(t) ∈ Re for all real t. Note that if no control is
set, the default u is a zero function. Solutions are mapped into the embedded dimension through
a linear transformation C ∈ Rℓ×e, so initial conditions can be recovered with C+ where ⋅+ is the
Moore–Penrose inverse.

The developer also must determine the distinction between in and out-of-distribution initial conditions.
For example, in our LDSSystem, in-distribution (IND) initial conditions have positive coordinates
and out-of-distribution (OOD) initial conditions have negative coordinates.

make_data evolves a collection of initial conditions for a number of timesteps, with op-
tional control inputs and noise; calc_error calculates the error between two sets of trajec-
tories; and calc_control_cost calculates the control cost of every control input set by a
AbstractAlgorithm subclass.

Algorithms In DynaDojo, algorithms must subclass from AbstractAlgorithm and implement
several abstract methods: fit, predict, and (if the algorithm uses control) act. fit trains a
algorithm on a collection of trajectories in embedding space. predict predicts the evolution of a
set of initial conditions over a given number of timesteps. The first element of the trajectory should
always be the initial condition. act allows algorithms to set a control for a given control horizon
(described below).

For example, consider LinearRegression. It subclasses from AbstractAlgorithm. The fit
method applies the linear regression algorithm to data generated from LDSSystem (note that without
a Kalman filter, linear regression only works when the latent and embedding dimension are the
same). The linear regression predicts some matrix Â ∈ Rℓ×ℓ then predicts trajectories from a set of
initial conditions passed into predict by repeatedly multiplying the latest state conditions in the
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trajectories:

xi = Âxi−1

for i = 1, . . . , t where t is the number of timesteps to predict and x0 is the initial condition of the
trajectory to be predicted.

For completeness, LinearRegression also implements an unprincipled act that returns a random
control U ∼ Uni[−1,1]n×t×e where n is the number of trajectories in the data and e is the embedding
dimension. For every action horizon, data is then generated with control (assuming the control
constraint is satisfied). More details are in the psuedocode for evaluate in Algorithm 1.

Challenges The purpose of the Challenge class is to evaluate how certain algorithms per-
form on dynamical systems challenges with scaling parameters. Unlike AbstractSystem and
AbstractAlgorithm, Challenge is not an abstract base class. Developers may want to use
Challenge directly if they want to implement custom challenge without writing a new child subclass.
They may choose to do write Challenge subclasses for modularity. For example, DynaDojo provides
three base subclasses of Challenge: FixedTrainSize, FixedComplexity, and FixedError each
corresponding to different evaluation metrics.

The Challenge class only has one method: evaluate (see Algorithm 1) which takes in an algo-
rithm subclass constructor as well as any additional parameters that are needed for an algorithm’s
instantiation, fitting, or acting. It also accepts arguments which determine the complexity of the
data that algorithm instances are fitted and evaluated on. The main loop in evaluate iterates over
different sets of training data sizes, timesteps, embedded dimensions, and latent dimensions. When
needed, a system is instantiated (using the challenge instance’s system_cls attribute). The system
generates data for the algorithm to be fit on. If the challenge is instantiated with a nonzero number
of control horizons, the algorithm is made to generate control tensors in Rn×t×e which the system
instance uses to extend the training trajectories from their endpoints; however, if the selected control
exceeds the control cost per dimension, evaluate throws an error and stops early. This happens
control_horizons times until the algorithm instance is finished training. The system is then used to
generate test trajectories. The error between the predicted test trajectories and the true test trajectories
is calculated using the calc_error method defined by the system.

B Implemented systems

B.1 N -body problem

Figure 12: A numerical solution to the 6-body problem. Five bodies orbit a central star in the center.

The N -body problem exudes a captivating allure as it unravels the intricate interplay of celestial
bodies moving under the influence of gravitational forces. Beyond its ethereal beauty, this problem
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Algorithm 1 Evaluate

Input: System constructor, model constructor
Input: Training sizes N , latent dimensions L, timesteps T
Optional: Embedding dimensions E
Input: Control constraint c, control horizons h
Input: Repetitions r
Input: Test size n′ and timesteps t′
Output: Evaluation data D

1: for each repetition 1, . . . , r do
2: for n, ℓ, t ∈ N ×L × T do
3: if E is constant then
4: e← E
5: else if E is array then
6: e← E[i] where i is ℓ’s index in L
7: else E is none
8: e← ℓ
9: end if

10: Initialize system s and model f with ℓ, e
11: Make training initial conditions x0 ← s(n)
12: Create training data without control x← s(x0,∅, t)
13: Fit model on x
14: Total cost c̄← 0
15: for control horizon 1, . . . , h do
16: Model sets control u← f(x)
17: System calculates control cost c̃← ∥u∥s
18: Check control meets constraint c̃ < c
19: c̄← c̄ + c̃
20: Extend training trajectories x← s(xt, u, t)
21: Fit model on x
22: end for
23: Make test initial conditions y0 ← s(n′)
24: Create test data without control y ← s(y0,∅, t′)
25: Model makes predictions ŷ ← f(y0)
26: System calculates loss l ← Ls(ŷ, y)
27: Update data D ← D ∪ {(n, ℓ, e, t, l, c̄)}
28: end for
29: end for
30: Return: D

holds a significant role as a dynamical system of paramount importance, offering insights into the
limits of predictability and the emergence of chaos in complex interactions. Its mathematical essence
encapsulates the challenge of solving for the trajectories of multiple interacting bodies, encompassing
the elegance of abstraction and the ever-growing sophistication of numerical methods and simulations,
transcending disciplines and inviting us to navigate the fascinating terrain where simplicity and
complexity harmoniously converge.

Consider N point masses mi for i = 1, . . . ,N in an inertial reference frame. Each mass has a position
qi. Letting G be the gravitational constant, the N -body problem can thus be formulated as the
following systems of differential equations:

mi
d2qi

dt2
=

N

∑
j=1
j≠i

Gmimj (qj − qi)
∥qj − qi∥3

= − ∂U
∂qi

where U is the self-potential energy.
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B.2 2-dimensional heat equation

The heat equation is a fundamental partial differential equation that governs the distribution of heat
over time in various physical systems. It describes how heat diffuses through a material or substance,
and its solutions provide insights into temperature changes and thermal behavior. The equation has
widespread applications in fields such as physics, engineering, and mathematics. Researchers have
extensively studied the heat equation due to its relevance in understanding heat transfer, diffusion
processes, and thermal dynamics in a wide range of contexts. From analyzing the cooling of objects
to modeling the behavior of fluids and even exploring the behavior of quantum systems, the heat
equation remains a cornerstone of scientific investigation and technological innovation.

Figure 13: An example of heat diffusing across a 2-dimensional plate. The initial values of the
problem were adapted from the DynaDojo logo.

DynaDojo implements a 2-dimensional version of the heat equation. We consider how heat diffuses
across a plate. The square plate’s width is the square root of the latent dimension. The dynamics of
the 2-dimensional heat equation can be expressed

∂u

∂t
= α(∂

2u

∂x2
+ ∂2u

∂y2
) ,

where α is the thermal diffusion and u is the temperature at time t of position (x, y) on the plate.

B.3 Generalized Lorenz System

In its classical formulation, the Lorenz system is a set of three nonlinear differential equations that
describe a simplified model of atmospheric convection. Developed by mathematician Edward Lorenz,
this system illustrates the concept of deterministic chaos, where small changes in initial conditions can
lead to significantly different outcomes over time. The Lorenz system’s solutions exhibit a fascinating
butterfly-like trajectory in a three-dimensional space known as the Lorenz attractor, highlighting the
sensitivity of complex dynamic systems to initial inputs. This system has applications in various
fields, including weather prediction, fluid dynamics, and chaos theory.

The Lorenz system can be generalized to n-dimensions using the following formulation [28]:
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dX

dτ
= −σX + σY

dY

dτ
= −XZ + rX − Y

dZ

dτ
=XY −XY1 − bZ

dYj

dτ
= jXZj−1 − (j + 1)XZj − dj−1Yj j ∈ [1,N]

dZj

dτ
= (j + 1)XYj − (j + 1)XYj+1 − βjZj j ∈ [1,N]

N = M − 3
2

dj−1 =
(2j + 1)2 + a2

1 + a2
βj = (j + 1)2 b

where M is odd and at least 5, τ = κ(1+a2)(π/H)2t and t is time, κ is thermal conductivity, a is the
ration of vertical scale of the convection cell to its horizontal scale, H is the domain height, σ = ν/κ
is the Prandtl number and ν is kinematic viscosity, r = Ra/Rc is the normalized Rayleigh number,
Ra is the Rayleigh number, and Rc is its critical value for the free-slip Rayleigh-Bernard problem.
For the base conditions, Z0 = Z and YN+1 = 0.

Figure 14: An example a 7-dimensional generalized Lorenz system projected into 3-dimensions
using principal component analysis.

B.4 Lotka-Volterra

Lotka-Volterra systems are widely used in ecology to predict how various species will interact with
each other, for example lynx and hares, multi-tropic ecosystem, or various bacteria in an environment.
Many implementations of Lotka-Volterra in existing literature are focused on a specific number of
species (often n ∈ {2,3,4}). With this specific number of species, the various equations for species
interactions are set ahead of time. The Lotka-Volterra systems for DynaDojo generalize for any n
number of species, and the equations of the interactions are randomly generated.

We achieve this by creating an A matrix that has all the interactions between species. There is
additional nuance and power afforded to the user on DynaDojo in determining if they want a prey-
predator system (where species “eat” each other) or competitive (where species all vie for the same
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Figure 15: Species in a prey-predator system (top) and competitive system (bottom). We observe
the oscillation cycles in prey-predator as well as the species fallout in competitive. For the same
underlying dynamics and A matrix, DynaDojo can simulate different trajectories: In-distribution
(IND, left), in-distribution with noisy data (IND-noisy, center), and Out-of-distribution (OOD, right).
In competitive, OOD leads to a different species being the dominant one (lion), emphasizing the
importance of a model that can handle slight deviations in starting conditions in still predicting the
underlying dynamics.

resources and only some typically survive) In competitive, each species has a carrying capacity K of
the upper population limit that an environment can support for that species. Users can set all of these
parameters, including specifically the overall number of species 4 as well as the number of Preys they
want. They are specific rules governing the random generation of A, especially in prey-predator to
prevent matrix explosion, including that prey intraspecies competition must be positive (without a
predator, more prey begets more prey through reproduction), predator intraspecies must be negative
(more predators crowd out the predators for resources), and that predators can eat prey while also
being eaten by other predators. Specifics ofA are documented in the codebase.

B.5 Kuramoto

The Kuramoto N -oscillators system simulates multiple weakly-coupled oscillators that synchronize
over time. It is an important tool for simulating biochemical processes of objects that work in tandem
like pacemaker cells for hearts and fireflies. The System gets more complex as more oscillators are
added.

B.6 Epidemic

In epidemic systems, there are a specified number of agents represented by a node graph, a prob-
ability of an edge being formed between two nodes, and the probability that infections are passed
on and probability that an agent recovers. There are many popular epidemic Systems implemented:
SIR (Susceptible/Infected/Removed), SIS (Susceptible/Infected/Susceptible), and SEIS: (Suscepti-
ble/Exposed/Infected/Susceptible), all representing different possible states. With DynaDojo it is
possible to predict the trajectories of each individual agent or instead the trajectories of each state
status as a whole for epidemics:
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Figure 16: Four oscillators in a Kuramoto system, simulated over 10 timesteps. Note the patterns of
peaks and troughs occurring together across the oscillations.

Figure 17: A SEIS System with 40 agents simulated for 40 timesteps, represented as the various
states of each agent (left) with Susceptible = 0, Infected = 1, Exposed = 2, and with each state status’
overall population (right).

B.7 Bounded confidence opinion

The Bounded-Confidence Opinion Systems are similar to the Epidemic Systems in that they are
represented by nodes in a NetworkX graph. However, what is being updated at each time step is
an agent’s opinion continuously represented from -1 to 1, or 0 to 1. The Deffuant and Media Bias
Systems are concerned with pair-wise interactions between two agents — and where if they are
similar enough (as defined by a confidence threshold of epsilon between 0 and 1), then the two
opinions become their average in the next timestep. The algorithm can be programmed to be more
biased in selecting these pairs, creating stronger and stronger echo chambers on more similar pairs,
or with media that exerts a strong fixed opinion on others.

The Hegselmann-Krause (HK), Weighted HK (WHK), and Attraction-Repulsion WHK (ARWHK)
are additional bounded confidence models. HK deals with an agent being influenced by a group of
similar agents (again defined by an epsilon bound) and often shows clustering of opinions. WHK
shows quick polarization as only similar pairs of agents interact with each other. ARWHK shows even
more complex dynamics as random pairs of agents are chosen and if they are similar they become the
average of each other but if unsimilar they grow further apart

19



Figure 18: An HK System showing three random clustering groups at e = 0.2(left), a WHK system
showing rapid polarization at e = 0.6 (center) and an ARWHK system (right) showing complex
attraction/repulsion dynamics with some polarization at e = 0.3.

B.8 Forward-backward stochastic neural networks

Figure 19: An Black-Scholes-Barenblatt system simulated at complexity/dimension=40, for 100
timesteps between the interval of 0 and 5. The blue trajectories are sampled in-distribution from
(0,0.8) and the orange trajectories are sampled out-of-distribution from (0.8,1).

To remedy the curse of dimensionality that makes it overly difficult to solve high-dimensional partial
differential equations (PDEs), [8] levaraged the relationship between PDEs and forward-backward
stochastic differential equations. The solutions to systems like Black-Scholes-Barenblatt (often used
in finance to predict asset modeling and call options) and Hamilton-Jacobi-Bellman (often used for
optimal control) are able to be obtained at much higher dimensions than typically possible with PDEs
(e.g., C=100).

While we sought to find other notions of complexity with the spatiotemporal grid itself in our 2D
Heat system, by working without the spatiotemporal grid, we are also able to use dimension as
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complexity. This is especially important for models like Black-Scholes-Barenblatt that are often
needed in high-dimensions to simulate dozens of finacial assets interacting with each other.

B.9 Cellular automata

Cellular automata (CAs) are discrete dynamical systems that generate complex behaviors from simple
rules. They consist of a regular grid of cells, each in one of a finite number of states, typically
binary. The state of a cell at the next time step is determined by the current states of a surrounding
neighborhood of cells according to a rule. These rules are applied iteratively for as many time steps
as desired.

To make cellular automata more similar to other dynamical systems, which often involve control
inputs and noise, we introduce modifications to the standard cellular automaton evolution rule.
Specifically, we incorporate a control input ut into the evolution rule and allow for random bit flips
with some probability p to introduce noise into the dynamics.

Mathematically, a cellular automaton with control inputs and noise can be defined as follows. Let
S be a finite set of states, typically {0,1}. The cellular automaton is defined over a d-dimensional
lattice, L = Zd, where each cell x ∈ L has a state s(x) ∈ S. The neighborhood of a cell is defined as
N(x) = {y ∈ L ∣ ∣∣y − x∣∣ ≤ r}, where r is the radius of the neighborhood and ∣∣ ⋅ ∣∣ is a norm on L.

The evolution of the cellular automaton is governed by a local rule f ∶ SN(x) → S, which updates the
state of a cell based on the states of the cells in its neighborhood. We modify this rule to include a
control input ut, leading to a new state based on st+1 = g(f(st(N(x))) + ut), where g is the step
function centered around 0.5.

In addition, we introduce noise into the dynamics by allowing for random bit flips with some
probability p. This can be modeled by a noise function n ∶ S → S that flips the state of a cell
with probability p. The state of the cellular automaton at time t + 1 is then given by st+1(x) =
n(g(f(st(N(x))) + ut)).

B.10 Linear dynamical systems

Linear dynamical systems (LDS) are a fundamental mathematical framework for modeling and
understanding time series data. They are particularly useful for representing systems where the state
changes over time as a linear combination of its current state and various input signals.

In the continuous-time setting, an LDS can be described by a first-order differential equation:

ẋ(t) = Ax(t) +Bu(t) (1)

Here, x(t) ∈ RD is the state vector at time t, u(t) ∈ RD is the input vector, A ∈ RD×D is the state
transition matrix, and B ∈ RD×D is the input matrix.

One of the key advantages of LDS is their tractability. They are directly solvable, meaning that
given the system parameters and initial conditions, we can compute the state of the system at any
future time. This makes LDS a powerful tool for simulation and prediction, and numerous tools and
techniques have been developed for working with them that we can use to establish baselines for our
challenges.

B.11 Threshold linear networks

Threshold linear networks (TLNs) are a class of dynamical systems that have been widely used to
model various phenomena, particularly in neuroscience to model the activity of neural networks. They
are a natural extension of linear dynamical systems, introducing nonlinearity through a threshold
function to better capture the behaviors of real-world systems.

A TLN consists of n units, each associated with a state variable xi(t) for i = 1, . . . , n, which evolves
over time according to the following differential equation:
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dxi

dt
= −xi +

⎡⎢⎢⎢⎣

n

∑
j=1

Wijxj + bi
⎤⎥⎥⎥⎦
+

, i = 1, . . . , n, (2)

where Wij represents the synaptic weight from unit j to unit i, bi is an external input to unit i, and
[⋅]+ =max{⋅,0} is the threshold nonlinearity. This is a common form of nonlinearity in models of
neural networks, where the firing rate of a neuron (which corresponds to the state variable in the
dynamical system) cannot be negative.

TLN dynamics can be represented in matrix form as:

ẋ(t) = −x(t) + [Wx(t) + b]+ (3)

B.12 Spiking neural networks

Spiking neural networks (SNNs) represent a further step in the progression towards more complex
and realistic models of neural systems. They introduce discontinuous dynamics (spikes) into the
framework of linear dynamical systems, making them a type of hybrid dynamical system. This
section provides an overview of the SNN model, with more a detailed explanation relegated to the
Appendix.

The SNN model [29] we include consists of D dynamical variables, denoted as x(t), a state transition
matrix A, time-varying external inputs c(t), output spike trains o(t), and a decoding weight matrix
D. The model can be described by the following components:

1. The linear dynamical system: ẋ(t) = Ax(t) +Bu(t)
2. The estimate of the dynamical variable: x̂(t) =Dr(t)
3. The time-varying firing rates of the neurons: ṙ(t) = −r(t) + o(t)
4. The cost function: E(t) = ∫

t
0 (

1
2
∣∣x(u) − x̂(u)∣∣22)du

The firing rule and membrane potential are governed by the following conditions:

1. Vi(t) ≥ Ti

2. Vi(t) =DT
i (x(t) − x̂(t))

3. Ti = 1
2
∣∣Di∣∣22

The membrane potential and connectivity filters are described by:

1. v̇(t) =DTADv(t) +Vsr(t) −Vfo(t) +DT
i c(t) + sV g(t)

2. Vf =DTD

3. Vs =DT (A + I)D

The key variables in this model are x(t) (dynamical variables), A (state transition matrix), c(t)
(external inputs), o(t) (output spike trains), D (decoding weight matrix), and g(t) corresponds to a
white “background noise” with unit-variance.

C Implemented models

C.1 Sparse identification of nonlinear dynamics

Sparse identification of nonlinear dynamics (SINDy) works by looking for sparse representations
of the dynamics of a system in terms of potential functions and their derivatives. It searches for the
simplest set of functions that can describe the observed behavior of the system. This approach is
particularly useful when dealing with high-dimensional and noisy data, where traditional methods
might be computationally intensive or difficult to apply.
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Figure 20: An example of the Lowest Possible Radius model, which sweeps across the training data
and finds a contradiction for radius 1, but where radius 2 is successful. Not all neighborhoods are
seen for radius 2 though, lowering prediction accuracy.

SINDy has found applications in various fields, including physics, biology, engineering, and eco-
nomics, where it can help reveal the underlying dynamics of complex systems from limited and
noisy data. It’s a powerful tool for model discovery and hypothesis generation based on empirical
observations.[30]

Figure 21: a) The in- and out-of-distribution training trajectories on a 3-dimensional Lorenz system;
b) the predicted trajectories using SINDy through DynaDojo.

C.2 Dynamic mode decomposition

Dynamic mode decomposition (DMD) is a powerful data-driven technique that unveils the intricate
dynamics of complex systems through observed data. By processing time-series data collected
from the system, DMD breaks down the information into snapshot matrices using singular value
decomposition. These matrices allow the identification of key modes and patterns within the data,
enabling the extraction of coherent structures. DMD then calculates eigenvalues and associated
eigenvectors, shedding light on the frequency, growth rates, and behavior of these modes. With these
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insights, DMD facilitates the reconstruction of the system’s behavior over time, enabling predictions
and a deeper understanding of its underlying dynamics.

DMD’s applicability spans various domains, from fluid dynamics to neuroscience and beyond. Its
ability to analyze high-dimensional and noisy data makes it a valuable tool for uncovering hidden
structures and trends within complex datasets. By providing a data-driven approach to deciphering
the evolution of systems, DMD contributes to advancements in fields such as physics, engineering,
and economics, fostering discoveries and predictions that enhance our comprehension of intricate
processes.

Figure 22: a) The in- and out-of-distribution training trajectories on a 2-dimensional LDS embedded
in three dimensions; b) the predicted trajectories using DMD through DynaDojo.

C.3 Lowest possible radius

The lowest possible radius (LPR) model, which works exclusively on the cellular automata (CA)
system without any noise, is based on a simple principle of remembering every neighborhood seen
in a training set. LPR starts with an assumed radius of 1 (neighborhood size of 3). It uses a
sweeping window for each row in each sample, and logs in the radiiTables dict the value that
each neighborhood maps to. As an example, at radius 1, after sweeping through a small part of
the training set, radiiTables could look like {"1":{"100":0, "000":1, "001":0, "010":0,
"100":None,...}} (see Figure 20). When sweeping, if LPR finds an instance of a neighboorhood
that maps to a value different than what it has stored in radiiTables — in Figure 20 the logged
value for "100" is 0, but the model then sees an example of 1 — it will bump up the radius by one, in
this case to 2. This is because in a CA system without noise, the mappings should be deterministic; if
"100" maps to both 0 and 1, this contradiction means "100" cannot be a valid neighborhood and the
radius of the system must be larger.

When a radius is bumped, LPR restarts its sweeping from the first row of the first sample, and starts
logging the value that each neighborhood of the new radius maps to. For the lowest radius that has no
contradictions on the entire sweeped training set, LPR saves that radius to use at prediction. At test
time, to predict the evolution of a CA system, LPR uses the radiiTables to map each neighborhood
to its correct value if it has seen it in training–and equally randomly between 0 and 1 if it has not
seen it. Thus, more training data is often helpful for LPR as it allows it to see more neighborhoods.
Once all neighborhoods are seen though for the actual radius of the system (which can happen easily
at lower radii), LPR saturates at an error of 0 and adding more training samples as no effect: All
neighborhoods for the correct radius are already seen.

For controlled LPR, for every control horizon, the model will create a U control matrix that edits
the last observation in the prior horizon. This edit is smart in the sense that it will transform that
observation by adding 1, -1, or 0 to change the observation to include only neighborhoods it has
not seen. That is, if the last observation of a sample in the previous horizon is "0,0,1,1,1,0"
and the model has not seen the neighborhoods keys "000" or "101", the u for that sample will be
"0,0,-1,0,-1,1" so that the observation, added with this u, becomes the desired "0,0,0,1,0,1"
and the model can learn how the unseen keys evolve in the system.
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This allows the controlled version of LPR to sometimes require less training samples than the
autonomous version of LPR. Notably, controlled LPR outperforms autonomous at samller radii
and adequate embedded dimension and control budget, as this provides enough runway to see a
substantial number of neighborhoods. In an embedded dimension of 12, the U can contain 4 unseen
neighborhoods for radius 1 (50% of all possible neighborhoods), but only 1 unseen neighborhood of
the 2048 possible neighborhoods for radius 5; lower radii are much amenable to this form of control.

C.4 Deep neural network

The research paper presents a standard Deep neural network (DNN) model. The DNN comprises
a stack of seven dense layers. The outer six hidden layers have 30 units and customizable hidden
activations. The middle layer has 10 units and a linear activation. For our results, we used linear
activations in between our hidden layers with L2 regularization on the weights, but DNN may perform
better on different systems with nonlinear activations. Models were evaluated after training for 30
epochs with the Adam optimizer and mean squared error loss.

C.5 Linear regression

We implement a standard linear regression (LR) baseline using sklearn.

For the controlled LR model, it adds a random u to each sample. Then, when fitting, it uses knowledge
of this u.
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